Granulocyte colony-stimulating factor attenuates oxidative stress-induced apoptosis in vascular endothelial cells and exhibits functional and morphologic protective effect in oxygen-induced retinopathy.
نویسندگان
چکیده
Granulocyte colony-stimulating factor (G-CSF) is a known hematopoietic glycoprotein, and recent studies have revealed that G-CSF possesses other interesting properties. Oxidative stress is involved in many diseases, such as atherosclerosis, heart failure, myocardial infarction, Alzheimer disease, and diabetic retinopathy. This study was designed to examine whether G-CSF has a protective effect on endothelial cells against oxidative stress and to investigate whether G-CSF has a therapeutic role in ischemic vascular diseases. Expression of G-CSF (P < .01) and G-CSF receptor (P < .05) mRNA in human retinal endothelial cells (HRECs) was significantly up-regulated by oxidative stress. Treatment with 100 ng/mL G-CSF significantly reduced H(2)O(2)-induced apoptosis in HRECs from 61.7% to 41.4% (P < .05). Akt was phosphorylated in HRECs by G-CSF addition, and LY294002, a PI3K inhibitor, significantly attenuated the antiapoptotic effect of G-CSF (by 44.1%, P < .05). The rescue effect was also observed in human umbilical vein endothelial cells. In mouse oxygen-induced retinopathy model, G-CSF significantly reduced vascular obliteration (P < .01) and neovascular tuft formation (P < .01). G-CSF treatment also clearly rescued the functional and morphologic deterioration of the neural retina. A possibility of a novel therapeutic strategy for ischemic diseases through attenuating vascular regression using G-CSF was proposed.
منابع مشابه
VASCULAR BIOLOGY Granulocyte colony-stimulating factor attenuates oxidative stress–induced apoptosis in vascular endothelial cells and exhibits functional and morphologic protective effect in oxygen-induced retinopathy
Granulocyte colony-stimulating factor (G-CSF) is a known hematopoietic glycoprotein, and recent studies have revealed that G-CSF possesses other interesting properties. Oxidative stress is involved in many diseases, such as atherosclerosis, heart failure, myocardial infarction, Alzheimer disease, and diabetic retinopathy. This study was designed to examine whether G-CSF has a protective effect ...
متن کاملMesenchymal Stem Cells with Granulocyte Colony-Stimulating Factor Reduce Stress Oxidative Factors in Parkinson\'s Disease
Background: Recent studies have shown that bone marrow mesenchymal stem cells (BMSCs) have a putative ability to promote neurogenesis and produce behavioral and functional improvement. Our previous study demonstrated that co-treatment of granulocyte colony-stimulating factor (G-CSF) and BMSCs have beneficial effects on Parkinson's models. The main purpose of this research was to investigate the...
متن کاملAdiponectin alleviate blood hypercoagulability via inhibiting endothelial cell apoptosis induced by oxidative stress in septic rats
Objective(s): The purpose of this study was to detect the protective effects of adiponectin on coagulation dysfunction and its mechanism in sepsis of rats.Materials and Methods: The experimental samples were composed of sham group, model group that was underwent cecal ligation and puncture (CLP) and three adiponectin treatment groups that treated by adiponectin with different dose (72 μg/kg, ...
متن کاملProtective effect of bioactive compounds from Echinophora cinerea against cisplatin-induced oxidative stress and apoptosis in the PC12 cell line
Objective(s): The present study aims to evaluate the protective effect of the compounds isolated from Echinophora cinerea (E. cinerea) against oxidative stress and apoptosis induced by cisplatin (CIS) in PC12 cells. Materials and Methods: Six compounds were isolated as quercetrin-3-O-β-D-glucopyranoside (QUE), osthol (OST), verbenone-5-O-β-D-glycopyranoside (VER), Isoimperatorin (ISO), kaempfer...
متن کاملComparison of Transplantation of Bone Marrow Stromal Cells (BMSC) and Stem Cell Mobilization by Granulocyte Colony Stimulating Factor after Traumatic Brain Injury in Rat
Background: Recent clinical studies of treating traumatic brain injury (TBI) with autologous adult stem cells led us to compare effect of intravenous injection of bone marrow mesenchymal stem cells (BMSC) and bone marrow hematopoietic stem cell mobilization, induced by granulocyte colony stimulating factor (G-CSF), in rats with a cortical compact device. Methods: Forty adult male Wistar rats w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Blood
دوره 117 3 شماره
صفحات -
تاریخ انتشار 2011